PKCα regulates the hypertrophic growth of cardiomyocytes through extracellular signal–regulated kinase1/2 (ERK1/2)
نویسندگان
چکیده
Members of the protein kinase C (PKC) isozyme family are important signal transducers in virtually every mammalian cell type. Within the heart, PKC isozymes are thought to participate in a signaling network that programs developmental and pathological cardiomyocyte hypertrophic growth. To investigate the function of PKC signaling in regulating cardiomyocyte growth, adenoviral-mediated gene transfer of wild-type and dominant negative mutants of PKC alpha, beta II, delta, and epsilon (only wild-type zeta) was performed in cultured neonatal rat cardiomyocytes. Overexpression of wild-type PKC alpha, beta II, delta, and epsilon revealed distinct subcellular localizations upon activation suggesting unique functions of each isozyme in cardiomyocytes. Indeed, overexpression of wild-type PKC alpha, but not betaI I, delta, epsilon, or zeta induced hypertrophic growth of cardiomyocytes characterized by increased cell surface area, increased [(3)H]-leucine incorporation, and increased expression of the hypertrophic marker gene atrial natriuretic factor. In contrast, expression of dominant negative PKC alpha, beta II, delta, and epsilon revealed a necessary role for PKC alpha as a mediator of agonist-induced cardiomyocyte hypertrophy, whereas dominant negative PKC epsilon reduced cellular viability. A mechanism whereby PKC alpha might regulate hypertrophy was suggested by the observations that wild-type PKC alpha induced extracellular signal-regulated kinase1/2 (ERK1/2), that dominant negative PKC alpha inhibited PMA-induced ERK1/2 activation, and that dominant negative MEK1 (up-stream of ERK1/2) inhibited wild-type PKC alpha-induced hypertrophic growth. These results implicate PKC alpha as a necessary mediator of cardiomyocyte hypertrophic growth, in part, through a ERK1/2-dependent signaling pathway.
منابع مشابه
N-n-Butyl Haloperidol Iodide Ameliorates Cardiomyocytes Hypoxia/Reoxygenation Injury by Extracellular Calcium-Dependent and -Independent Mechanisms
N-n-butyl haloperidol iodide (F2) has been shown to antagonize myocardial ischemia/reperfusion injury by blocking calcium channels. This study explores the biological functions of ERK pathway in cardiomyocytes hypoxia/reoxygenation injury and clarifies the mechanisms by which F2 ameliorates cardiomyocytes hypoxia/reoxygenation injury through the extracellular-calcium-dependent and -independent ...
متن کاملRole of heterotrimeric G protein and calcium in cardiomyocyte hypertrophy induced by IGF-1.
In the heart, insulin-like growth factor-1 (IGF-1) is a peptide with pro-hypertrophic and anti-apoptotic actions. The pro-hypertrophic properties of IGF-1 have been attributed to the extracellular regulated kinase (ERK) pathway. Recently, we reported that IGF-1 also increases intracellular Ca(2+) levels through a pertussis toxin (PTX)-sensitive G protein. Here we investigate whether this Ca(2+)...
متن کاملAngiotensin‐Converting Enzyme 3 (ACE3) Protects Against Pressure Overload‐Induced Cardiac Hypertrophy
BACKGROUND Angiotensin-converting enzyme 3 (ACE3) is a recently defined homolog of ACE. However, the pathophysiological function of ACE3 is largely unknown. Here, we aim to explore the role of ACE3 in pathological cardiac hypertrophy. METHODS AND RESULTS Neonatal rat cardiomyocytes (NRCMs) with gain and loss of function of ACE3 and mice with global knockout or cardiac-specific overexpression ...
متن کاملDifferent Expression of Extracellular Signal-Regulated Kinases (ERK) 1/2 and Phospho-Erk Proteins in MBA-MB-231 and MCF-7 Cells after Chemotherapy with Doxorubicin or Docetaxel
Objective(s) Curative treatment of breast cancer patients using chemotherapy often fails as a result of intrinsic or acquired resistance of the tumor to the drug. ERK is one of the main components of the Ras/Raf/MEK/ERK cascade, which mediates signal from cell surface receptors to transcription factors to regulate different gene expression. In this study, cytotoxicity and the expression of Erk...
متن کاملExtracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth.
RATIONALE An increase in cardiac afterload typically produces concentric hypertrophy characterized by an increase in cardiomyocyte width, whereas volume overload or exercise results in eccentric growth characterized by cellular elongation and addition of sarcomeres in series. The signaling pathways that control eccentric versus concentric heart growth are not well understood. OBJECTIVE To det...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 156 شماره
صفحات -
تاریخ انتشار 2002